Simulating spatial data

@ We've talked about simulating simple point patterns
o Inference was via simulation
o Does observed summary function “look like” simulated patterns?

o Now consider simulating geostatistical and areal data

@ Given a set of locations s, a model, and parameter values
want to generate a set of values for Z(s)

o Focus on values from normal distributions, want N(u, o?)

e If Z independent, easy: generate Z ~ N(0,1)
calculate: 0 Z +

o If spatially correlated: want N(u, X)
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Why simulate data?

o Want to know about some summary of the spatial data
o What proportion of the Swiss Zura has Zn > 107
o Compute from map of prediction
e Many summary statistics: ignoring uncertainty = biased summary
o Better to simulate 5-10 data sets, summarize each, average
o To better understand uncertainty
o In a summary, or a map
o Inference when theory inadequate

o Often inadequate with non-normal distributions
o Or when looking at the covariance parameters
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Simulating correlated data

@ a brute-force algorithm:

calculate p or pu(s) for each location if trend

determine X from geostat model or equ's for CAR/SAR

calculate C = Cholesky square-root decomposition of X. cc=x
simulate vector of standard normals, Z ~ N(0, )

return Z(s) = p + c'z

@ Detail:

o Matrix algebra defines C as a lower triangular matrix
o R chol() function returns an upper triangular matrix,
o Above formulae are correct for R parameterization
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Why does this work?
o Mean:

EZ(s)=p+C EZ=p

@ Variance:
Var Z(s)=C varzC=C'IC=C'C=%

@ Distribution: linear combinations of normals are normal

@ Example:
321 1.75 1.15 0.58
¥=123 2|, C=|0 1.29 1.03
1 2 3 0 0 1.26
0 Z, =1732

o Z,=115Z +1.292
o Z,, = 0587 +1.03Z + 1.26Z;
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@ Timing: k = 50 observations,
o simulate 1000 sets separately: 7.18 sec
o simulate all 1000 simultaneously: 0.04 sec
o Difference is time req. to calculate the Cholesky

o Practical use:
o either calculate C once, do Z(s) “by hand”
e or, simulate many sets, use as needed

@ Cholesky algorithm fails if X is large,

o In fact, working with X is difficult
e 1000 locations, X is 1000 x 1000 - huge
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Better algorithms

@ Many choices: usual goal is reduce memory demand
@ RandomFields has 11 for Gaussian data
@ concept for one: “turning bands” algorithm
o simulate a direction 6 (will have many of these)

simulate Z's in chunks along that line (1D problem)
for any s, project s (in 2D) onto the line, record Z at that projected
location
repeat for many (e.g. 10 - 15) directions, average contributions from
all directions
picture on next slide (will be hand-drawn)
o The detail is relating the 2D covariance function for Z(s) to the
corresponding 1D covariance function for the line
The advantage is not memory intensive

o don't have to work with NxN matrices

@ so can use for LARGE problems
And extremely fast

o Because easy to simulate chunks along a line
Turning bands is my 'go-to’ algorithm, but glad | don't have to code it
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Unconditional and conditional simulation

@ Cholesky and turning bands generate unconditional simulations
@ Have similar trends and spatial correlation as the data

o But, p and X will be similar
o And more similar with large sample size

@ But, no connection to the observed values

o Z may look very different
o Specifically new Z(s)s at a sample location will vary

@ Demonstrate with 3 simulated datasets

o Show the empirical variograms (as lines) then 3 data plots
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Unconditional simulation:

Empirical variograms for the 3 simulations
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onditional simulatio

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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onditional simulatio

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid
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Conditional Simulation:

@ Honor the observed data

o Simulate of new values conditional on obs. values

o predictions at any observed location are always the original value
@ Given values at obs. locations, simulate values at other points
@ Two sets of locations:

o s.: locations in the original data set

e s,: new locations where you want conditional predictions

o And one observed set of values: Z(s.)

e want to simulate Z(s,, the new random values at {s,}
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Conditional simulation: the usual algorithm

Uses three sets of predictions to make sure that Z(s.) are constant
calculate kriging predictions = Z*(s,) using values at Z(s.)
simulate unconditional random field at {s.} = Z°(s¢)

simulate 2nd unconditional random field at {s,} = Z°(s,)
calculate kriging predictions = Z1(s,) using values at Z°(s.)
return Z*(s,) + Z°(sn) — Z1(sn)
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Conditional simulation in pictures

Observed data (simulated values, not a “real” dataset)
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| simulation in pictures

Conditional simulation # 1
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Conditional simulation in pictures

Conditional simulation # 2
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Conditional simulation in pictures

Conditional simulation # 3
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o If s is a conditioning point (obs. value), i.e. one of the locations in
the {sc} set,
o 1st kriging prediction: Z*(s.) = obs. value, Z(s.)
o 2nd kriging prediction: Zf(s.) = obs. value, Z°(s.)
o so returned value is obs. value, Z(s.)
o If s, is far from any obs. loc, s.:
o Z*(sp) =pand Zf(s,)) =
o so return the unconditional predictions, Z°(s,)
@ Both behaviours for extreme situations “make sense”
o Usually only used for geostat data.
o With areal data, have an obs. value for all regions in study area
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How could we use this?

@ Given observed values, what fraction of the area > 77

o Estimate by ordinary kriging to predict at fine grid

o Estimate proportion of predictions > 7

o | don't have that estimate: let's say it's 20% of area
@ How uncertain?

o Conditional simulation given data

o Three simulations: 19%, 18.5%, 21.5%

o 100 simulations: mean = 18.7%, sd = 2.8%
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Conditional estimates of proportion > 7
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Simulating point patterns

@ Have seen simulating CSR, without discussing details
@ Big question: is N known or random?
o Known: every realization has 100 (or 224, or 59) points
Binary process: N fixed
e Random: N ~ some distribution, NV not constant
Poisson process: N ~ Pois (A A)
o simulate N, then simulate locations of N events
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Simulating point patterns

@ 2nd question: is study area rectangular or irregular

o rectangular, L, by L,: X ~ Unif (0,Ly), Y ~ Unif (0, L)

o irregular:
o find bounding box
o simulate within bounding box
o keep observations within study region

o How many events to simulate in the bounding box?
o Poisson: Ny, ~ Pois (A BBox area), gives Pois (AA) in study area
o Binary: N, = 1.2\ BBox area

keep first N events. 1.2 is ad hoc. Can also simulate sequentially.
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Simulating locations with trend

e What if A(s) = f(X(s))?

@ Use a rejection algorithm (Lewis and Shedler)
Find L, = max A(s) in the study region
Simulate LA locations (si, s, -+ sk)

Calculate p; = A(sj)/Lm for each event

L]
]
L]
o Retain the point with probability p;

e i.e., simulate U; ~ Unif (0,1) for each event
o retain the point if U; < p;

o Intensity at location s; = Ly,pj = A(s;)
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Simulating non-Poisson processes

o Neyman-Scott: follow the definition
e Simulate k locations for mothers
o For each mom, simulate N; ~ Pois () # of daughters
o Simulate locations of each daughter around Mom

@ Strauss (inhibition) processes

Harder, usually done with a sequential algorithm

given set of locations (current events)

simulate potential location of next event, Spey

use inhibition model to calculate A(Spew)

retain with probability A(Spew)/A
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Pattern reconstruction

e What if you don't have a model (or don't trust your model)?

@ Pattern reconstruction generates random patterns “like” some
observed pattern
@ You specify what characteristics that should match
o such as K(r) and nearest-neighbor distance D(r)
@ Basic idea, to match observed locations O
o Simulate an arbitrary set of locations: Ly

o Randomly delete one location and simulate another: L,
o For both sets, L; and L, calculate “Energy”

o quantifies discrepancy between O and L;
o Keep the set with the lower energy
o i.e., keep the new location if it improves the fit

o Repeat until arbitrarily close to observed pattern
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Pattern reconstruction

@ An example of simulated annealing, a technique for optimization of
difficult problems
@ Lots of details that I'm skipping
More complete descriptions are:
o Wiegand and Moloney, pp 276-287
o lllian et al. pp 407-415
Wiegand et al 2013 Ecography considered which summary statistics
provide the most information for reconstructing patterns
Implemented in the shar library (species-habitat associations)
o Look at the relationships between species occurrences and habitat
information
o Need to account for potential correlation in occurrence.
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