

- We've talked about simulating simple point patterns
 - Inference was via simulation
 - Does observed summary function "look like" simulated patterns?
- Now consider simulating geostatistical and areal data
- Given a set of locations s , a model, and parameter values want to generate a set of values for $Z(s)$
- Focus on values from normal distributions, want $N(\mu, \sigma^2)$
- If Z independent, easy: generate $Z \sim N(0, 1)$
calculate: $\sigma Z + \mu$
- If spatially correlated: want $N(\mu, \Sigma)$

Why simulate data?

- Want to know about some summary of the spatial data
 - What proportion of the Swiss Zura has Zn > 10?
 - Compute from map of prediction
 - Many summary statistics: ignoring uncertainty \Rightarrow biased summary
 - Better to simulate 5-10 data sets, summarize each, average
- To better understand uncertainty
 - In a summary, or a map
- Inference when theory inadequate
 - Often inadequate with non-normal distributions
 - Or when looking at the covariance parameters

Simulating correlated data

- a brute-force algorithm:
 - calculate μ or $\mu(s)$ for each location if trend
 - determine Σ from geostat model or equ's for CAR/SAR
 - calculate $C = \text{Cholesky square-root decomposition of } \Sigma. C' C = \Sigma$
 - simulate vector of standard normals, $Z \sim N(\mathbf{0}, I)$
 - return $Z(s) = \mu + C' Z$
- Detail:
 - Matrix algebra defines C as a lower triangular matrix
 - R chol() function returns an upper triangular matrix,
 - Above formulae are correct for R parameterization

Why does this work?

- Mean:

$$E Z(s) = \mu + C' E Z = \mu$$
- Variance:

$$\text{Var } Z(s) = C' \text{Var } Z C = C' I C = C' C = \Sigma$$
- Distribution: linear combinations of normals are normal
- Example:

$$\Sigma = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 3 \end{bmatrix}, \quad C \approx \begin{bmatrix} 1.75 & 1.15 & 0.58 \\ 0 & 1.29 & 1.03 \\ 0 & 0 & 1.26 \end{bmatrix}$$
 - $Z_{s_1} = 1.73Z_1$
 - $Z_{s_2} = 1.15Z_1 + 1.29Z_2$
 - $Z_{s_3} = 0.58Z_1 + 1.03Z_2 + 1.26Z_3$

- Timing: $k = 50$ observations,
 - simulate 1000 sets separately: 7.18 sec
 - simulate all 1000 simultaneously: 0.04 sec
 - Difference is time req. to calculate the Cholesky
- Practical use:
 - either calculate \mathbf{C} once, do $\mathbf{Z}(\mathbf{s})$ "by hand"
 - or, simulate many sets, use as needed
- Cholesky algorithm fails if Σ is large,
- In fact, working with Σ is difficult
 - 1000 locations, Σ is 1000×1000 - huge

Better algorithms

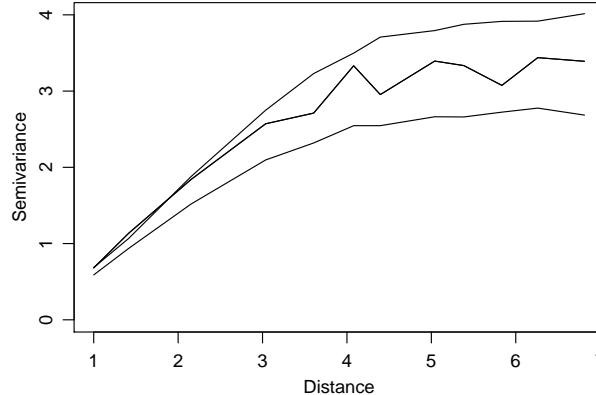
- Many choices: usual goal is reduce memory demand
- RandomFields has 11 for Gaussian data
- concept for one: "turning bands" algorithm
 - simulate a direction θ_k (will have many of these)
 - simulate Z 's in chunks along that line (1D problem)
 - for any s , project s (in 2D) onto the line, record Z at that projected location
 - repeat for many (e.g. 10 - 15) directions, average contributions from all directions
 - picture on next slide (will be hand-drawn)
 - The detail is relating the 2D covariance function for $\mathbf{Z}(\mathbf{s})$ to the corresponding 1D covariance function for the line
 - The advantage is not memory intensive
 - don't have to work with $N \times N$ matrices
 - so can use for LARGE problems
 - And extremely fast
 - Because easy to simulate chunks along a line
 - Turning bands is my 'go-to' algorithm, but glad I don't have to code it

Unconditional and conditional simulation

- Cholesky and turning bands generate unconditional simulations
- Have similar trends and spatial correlation as the data
 - But, μ and Σ will be similar
 - And more similar with large sample size
- But, no connection to the observed values
 - Z may look very different
 - Specifically new $Z(s)$'s at a sample location will vary
- Demonstrate with 3 simulated datasets
- Show the empirical variograms (as lines) then 3 data plots

Unconditional simulation:

Empirical variograms for the 3 simulations

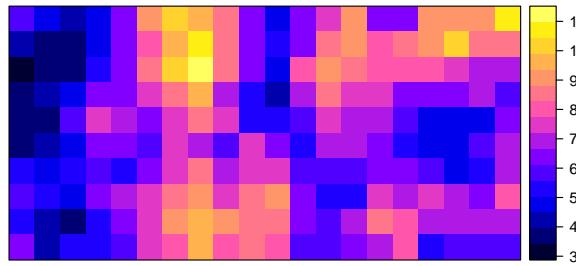


Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid

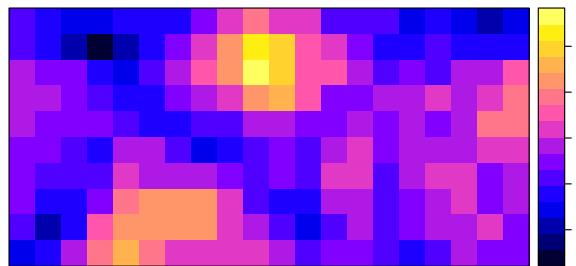
Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid



Unconditional simulation

Matern, k=1, p.sill=4, nugget=1, range=3, 20 x 10 grid



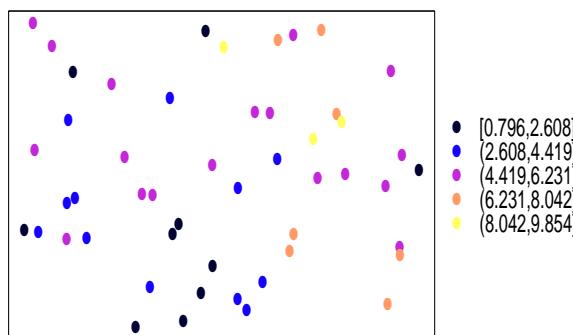
- Honor the observed data
 - Simulate of new values conditional on obs. values
 - predictions at any observed location are **always** the original value
- Given values at obs. locations, simulate values at other points
- Two sets of locations:
 - s_c : locations in the original data set
 - s_n : new locations where you want conditional predictions
- And one observed set of values: $Z(s_c)$
- want to simulate $Z(s_n)$, the new random values at $\{s_n\}$

Conditional simulation: the usual algorithm

- Uses three sets of predictions to make sure that $Z(s_c)$ are constant
- calculate kriging predictions = $Z^*(s_n)$ using values at $Z(s_c)$
- simulate unconditional random field at $\{s_c\} = Z^o(s_c)$
- simulate 2nd unconditional random field at $\{s_n\} = Z^o(s_n)$
- calculate kriging predictions = $Z^\dagger(s_n)$ using values at $Z^o(s_c)$
- return $Z^*(s_n) + Z^o(s_n) - Z^\dagger(s_n)$

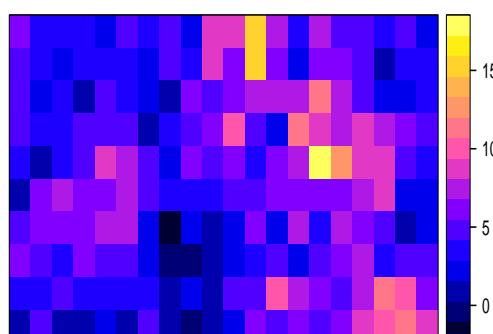
Conditional simulation in pictures

Observed data (simulated values, not a “real” dataset)



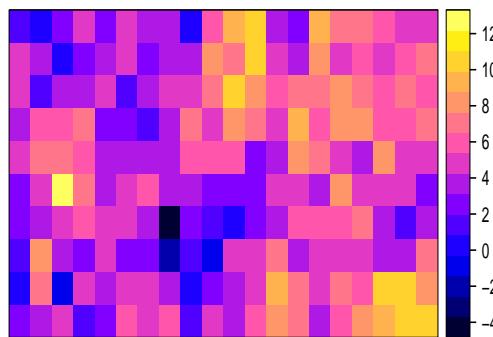
Conditional simulation in pictures

Conditional simulation # 1



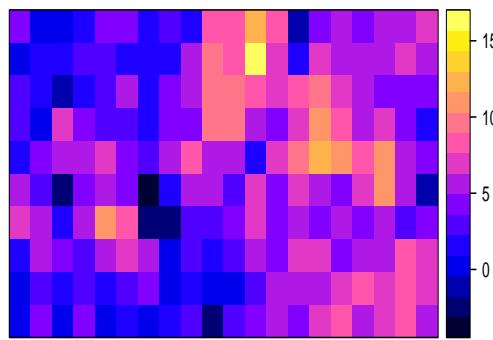
Conditional simulation in pictures

Conditional simulation # 2



Conditional simulation in pictures

Conditional simulation # 3

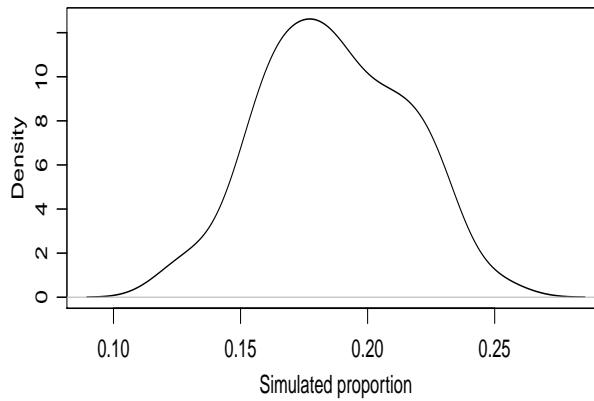


Conditional simulation properties

- If s is a conditioning point (obs. value), i.e. one of the locations in the $\{s_c\}$ set,
 - 1st kriging prediction: $Z^*(s_c) = \text{obs. value}$, $Z(s_c)$
 - 2nd kriging prediction: $Z^\dagger(s_c) = \text{obs. value}$, $Z^\circ(s_c)$
 - so returned value is obs. value, $Z(s_c)$
- If s_n is far from any obs. loc, s_c :
 - $Z^*(s_n) = \mu$ and $Z^\dagger(s_n) = \mu$
 - so return the unconditional predictions, $Z^\circ(s_n)$
- Both behaviours for extreme situations "make sense"
- Usually only used for geostat data.
 - With areal data, have an obs. value for all regions in study area

How could we use this?

- Given observed values, what fraction of the area > 7 ?
 - Estimate by ordinary kriging to predict at fine grid
 - Estimate proportion of predictions > 7
 - I don't have that estimate: let's say it's 20% of area
- How uncertain?
 - Conditional simulation given data
 - Three simulations: 19%, 18.5%, 21.5%
 - 100 simulations: mean = 18.7%, sd = 2.8%



Simulating point patterns

- Have seen simulating CSR, without discussing details
- Big question: is N known or random?
 - Known: every realization has 100 (or 224, or 59) points
Binary process: N fixed
 - Random: $N \sim$ some distribution, N not constant
Poisson process: $N \sim \text{Pois}(\lambda A)$
 - simulate N , then simulate locations of N events

Simulating point patterns

- 2nd question: is study area rectangular or irregular
 - rectangular, L_x by L_y : $X \sim \text{Unif}(0, L_x)$, $Y \sim \text{Unif}(0, L_y)$
 - irregular:
 - find bounding box
 - simulate within bounding box
 - keep observations within study region
- How many events to simulate in the bounding box?
 - Poisson: $N_{bb} \sim \text{Pois}(\lambda \text{BBox area})$, gives $\text{Pois}(\lambda A)$ in study area
 - Binary: $N_{bb} = 1.2\lambda \text{BBox area}$
keep first N events. 1.2 is ad hoc. Can also simulate sequentially.

Simulating locations with trend

- What if $\lambda(s) = f(X(s))$?
- Use a rejection algorithm (Lewis and Shedler)
 - Find $L_m = \max \lambda(s)$ in the study region
 - Simulate $L_m A$ locations (s_1, s_2, \dots, s_k)
 - Calculate $p_i = \lambda(s_i)/L_m$ for each event
 - Retain the point with probability p_i
 - i.e., simulate $U_i \sim \text{Unif}(0, 1)$ for each event
 - retain the point if $U_i \leq p_i$
- Intensity at location $s_i = L_m p_i = \lambda(s_i)$

- Neyman-Scott: follow the definition
 - Simulate k locations for mothers
 - For each mom, simulate $N_i \sim \text{Pois}(\mu)$ # of daughters
 - Simulate locations of each daughter around Mom
- Strauss (inhibition) processes
 - Harder, usually done with a sequential algorithm
 - given set of locations (current events)
 - simulate potential location of next event, s_{new}
 - use inhibition model to calculate $\lambda(s_{new})$
 - retain with probability $\lambda(s_{new})/\lambda$

Pattern reconstruction

- What if you don't have a model (or don't trust your model)?
- Pattern reconstruction generates random patterns "like" some observed pattern
- You specify what characteristics that should match
 - such as $K(r)$ and nearest-neighbor distance $D(r)$
- Basic idea, to match observed locations O
 - Simulate an arbitrary set of locations: L_1
 - Randomly delete one location and simulate another: L_2
 - For both sets, L_1 and L_2 calculate "Energy"
 - quantifies discrepancy between O and L_i
 - Keep the set with the lower energy
 - i.e., keep the new location if it improves the fit
 - Repeat until arbitrarily close to observed pattern

Pattern reconstruction

- An example of simulated annealing, a technique for optimization of difficult problems
- Lots of details that I'm skipping
- More complete descriptions are:
 - Wiegand and Moloney, pp 276-287
 - Illian et al. pp 407-415
- Wiegand et al 2013 *Ecography* considered which summary statistics provide the most information for reconstructing patterns
- Implemented in the shar library (species-habitat associations)
 - Look at the relationships between species occurrences and habitat information
 - Need to account for potential correlation in occurrence.